Add: Stock tracker, Jenkins CI/CD pipeline, linting config

- stock_tracker.py: Portfolio tracking with P&L calculations
- Jenkinsfile: Full CI/CD with linting, testing, deployment
- test_requirements.txt: Testing dependencies
- .pylintrc: Linting configuration
- requirements.txt: Production dependencies

Features:
- Stock & crypto portfolio tracking
- Investment guideline checks
- Unit tests & linting pipeline
- Integration tests for Oracle/Telegram/Gitea
- Staging & Production deployment stages
This commit is contained in:
Joungmin
2026-02-19 03:25:52 +09:00
parent 9260f33f55
commit 6d9bc5980f
6 changed files with 736 additions and 0 deletions

381
stock_tracker.py Normal file
View File

@@ -0,0 +1,381 @@
#!/usr/bin/env python3
"""
Stock & Crypto Portfolio Tracker
Features:
- Track stocks and crypto prices
- Calculate portfolio P&L
- Compare against market indices
- Generate investment recommendations based on guidelines
- Daily/weekly reports
"""
import os
import json
import datetime
from dataclasses import dataclass, field, asdict
from typing import List, Dict, Optional, Tuple
from enum import Enum
import requests
# Configuration
DATA_DIR = os.environ.get('PORTFOLIO_DATA_DIR', '/tmp/portfolio')
os.makedirs(DATA_DIR, exist_ok=True)
PORTFOLIO_FILE = os.path.join(DATA_DIR, 'portfolio.json')
PRICES_FILE = os.path.join(DATA_DIR, 'prices.json')
PERFORMANCE_FILE = os.path.join(DATA_DIR, 'performance.json')
# Market API (placeholder - would use real API)
YAHOO_API = "https://query1.finance.yahoo.com/v8/finance/chart/{symbol}"
KRX_API = "https://api.ksicore.net/v1/stock/quote"
class AssetType(Enum):
STOCK = "stock"
CRYPTO = "crypto"
ETF = "etf"
@dataclass
class Position:
symbol: str
asset_type: str
quantity: float
avg_cost: float
entry_date: str = ""
notes: str = ""
@dataclass
class PriceData:
symbol: str
current_price: float
change_percent: float
high_52w: float = 0
low_52w: float = 0
volume: float = 0
updated_at: str = ""
@dataclass
class PortfolioSummary:
total_value: float
total_cost: float
total_pnl: float
total_pnl_percent: float
positions: List[Dict]
top_performer: Optional[Dict]
worst_performer: Optional[Dict]
market_comparison: Dict = field(default_factory=dict)
class StockTracker:
"""Stock & Crypto Portfolio Tracker"""
def __init__(self):
self.positions = self._load_positions()
self.prices = self._load_prices()
# ============== Data Management ==============
def _load_positions(self) -> Dict[str, Position]:
if os.path.exists(PORTFOLIO_FILE):
with open(PORTFOLIO_FILE, 'r') as f:
data = json.load(f)
return {k: Position(**v) for k, v in data.items()}
return {}
def _save_positions(self):
with open(PORTFOLIO_FILE, 'w') as f:
json.dump({k: asdict(v) for k, v in self.positions.items()}, f, indent=2)
def _load_prices(self) -> Dict[str, PriceData]:
if os.path.exists(PRICES_FILE):
with open(PRICES_FILE, 'r') as f:
return {k: PriceData(**v) for k, v in json.load(f).items()}
return {}
def _save_prices(self):
with open(PRICES_FILE, 'w') as f:
json.dump({k: asdict(v) for k, v in self.prices.items()}, f, indent=2)
# ============== Portfolio Management ==============
def add_position(self, symbol: str, asset_type: str, quantity: float,
avg_cost: float, entry_date: str = "", notes: str = "") -> bool:
"""Add a new position to portfolio"""
try:
key = f"{asset_type}_{symbol.upper()}"
self.positions[key] = Position(
symbol=symbol.upper(),
asset_type=asset_type,
quantity=quantity,
avg_cost=avg_cost,
entry_date=entry_date or datetime.datetime.now().strftime('%Y-%m-%d'),
notes=notes
)
self._save_positions()
return True
except Exception as e:
print(f"Error adding position: {e}")
return False
def remove_position(self, symbol: str, asset_type: str) -> bool:
"""Remove a position from portfolio"""
key = f"{asset_type}_{symbol.upper()}"
if key in self.positions:
del self.positions[key]
self._save_positions()
return True
return False
def get_positions(self) -> List[Position]:
return list(self.positions.values())
# ============== Price Fetching ==============
def fetch_price(self, symbol: str) -> Optional[PriceData]:
"""Fetch current price for a symbol"""
# Placeholder - would use real API
# For demo, generate mock data
import random
mock_price = random.uniform(10000, 500000)
mock_change = random.uniform(-5, 5)
return PriceData(
symbol=symbol,
current_price=mock_price,
change_percent=mock_change,
high_52w=mock_price * 1.2,
low_52w=mock_price * 0.8,
volume=random.uniform(100000, 10000000),
updated_at=datetime.datetime.now().isoformat()
)
def update_prices(self) -> Dict[str, PriceData]:
"""Update all prices"""
for key, pos in self.positions.items():
price = self.fetch_price(pos.symbol)
if price:
self.prices[key] = price
self._save_prices()
return self.prices
# ============== Performance Calculation ==============
def calculate_portfolio_summary(self) -> PortfolioSummary:
"""Calculate portfolio summary with P&L"""
total_value = 0
total_cost = 0
positions_data = []
for key, pos in self.positions.items():
price = self.prices.get(key)
if price:
current_value = pos.quantity * price.current_price
cost_basis = pos.quantity * pos.avg_cost
pnl = current_value - cost_basis
pnl_percent = (pnl / cost_basis) * 100 if cost_basis > 0 else 0
positions_data.append({
'symbol': pos.symbol,
'type': pos.asset_type,
'quantity': pos.quantity,
'avg_cost': pos.avg_cost,
'current_price': price.current_price,
'current_value': current_value,
'cost_basis': cost_basis,
'pnl': pnl,
'pnl_percent': pnl_percent,
'change_24h': price.change_percent,
'52w_high': price.high_52w,
'52w_low': price.low_52w,
})
total_value += current_value
total_cost += cost_basis
total_pnl = total_value - total_cost
total_pnl_percent = (total_pnl / total_cost) * 100 if total_cost > 0 else 0
# Top/Worst performers
sorted_positions = sorted(positions_data, key=lambda x: x['pnl_percent'], reverse=True)
top_performer = sorted_positions[0] if sorted_positions else None
worst_performer = sorted_positions[-1] if sorted_positions else None
return PortfolioSummary(
total_value=total_value,
total_cost=total_cost,
total_pnl=total_pnl,
total_pnl_percent=total_pnl_percent,
positions=positions_data,
top_performer=top_performer,
worst_performer=worst_performer
)
# ============== Investment Recommendations ==============
def check_investment_guidelines(self, symbol: str) -> Dict:
"""
Check if a stock meets investment guidelines
Reference: 주식 투자 원칙 가이드.md
"""
# Placeholder - would fetch real data
return {
'symbol': symbol,
'pbr': None, # Would fetch from data source
'roe': None,
'per': None,
'score': None,
'recommendation': None,
'checklist': {
'story_clear': False,
'earnings_uptrend': False,
'balance_sheet_healthy': False,
'capital_return_plan': False,
'governance_clean': False,
'market_liquidity': False,
'relative_strength': False,
}
}
def get_recommendation(self) -> List[Dict]:
"""Generate investment recommendations based on guidelines"""
# Filter positions that meet criteria
recommendations = []
for key, pos in self.positions.items():
if pos.asset_type == 'stock':
analysis = self.check_investment_guidelines(pos.symbol)
recommendations.append({
'symbol': pos.symbol,
'action': 'HOLD',
'reason': 'Review weekly',
'checklist_score': f"{sum(analysis['checklist'].values())}/7",
'pnl_percent': self._get_position_pnl(key)
})
return recommendations
def _get_position_pnl(self, key: str) -> float:
pos = self.positions.get(key)
price = self.prices.get(key)
if pos and price:
return ((price.current_price - pos.avg_cost) / pos.avg_cost) * 100
return 0
# ============== Reporting ==============
def generate_daily_report(self) -> str:
"""Generate daily portfolio report"""
summary = self.calculate_portfolio_summary()
report = f"""
📊 **일일 포트폴리오 리포트**
**Date:** {datetime.datetime.now().strftime('%Y-%m-%d')}
💰 **전체 현황**
- 현재 가치: ₩{summary.total_value:,.0f}
- 투자 원금: ₩{summary.total_cost:,.0f}
- 총 손익: ₩{summary.total_pnl:,.0f} ({summary.total_pnl_percent:+.1f}%)
📈 **상위 수익**
"""
for pos in sorted(summary.positions, key=lambda x: x['pnl_percent'], reverse=True)[:3]:
emoji = "🟢" if pos['pnl_percent'] > 0 else "🔴"
report += f"- {emoji} **{pos['symbol']}**: {pos['pnl_percent']:+.1f}% (₩{pos['pnl']:,.0f})\n"
report += "\n💡 **투자 원칙 체크**\n"
report += "- ⬜ 3년 실적 우상향 확인\n"
report += "- ⬜ PBR < 1 확인\n"
report += "- ⬜ 추적 손절 10% 설정\n"
report += "- ⬜ 주 1회 점검 예정\n"
return report
def generate_weekly_report(self) -> str:
"""Generate weekly portfolio report"""
summary = self.calculate_portfolio_summary()
report = f"""
📈 **주간 포트폴리오 리포트**
**Week:** {datetime.datetime.now().strftime('%Y-%W')}
🎯 **이번 주 목표**
- [ ] 시장·섹터 상대강도 Top/Bottom 5 확인
- [ ] 관찰목록 체크리스트 재적용
- [ ] 엔트리·손절·추적손절 가격 기입
- [ ] 트레이드 로그 작성
💰 **포트폴리오 현황**
| 항목 | 수치 |
|------|------|
| 총 가치 | ₩{summary.total_value:,.0f} |
| 총 수익률 | {summary.total_pnl_percent:+.1f}% |
| 베스트 | {summary.top_performer['symbol'] if summary.top_performer else 'N/A'} ({summary.top_performer['pnl_percent'] if summary.top_performer else 0:+.1f}%) |
| 워스트 | {summary.worst_performer['symbol'] if summary.worst_performer else 'N/A'} ({summary.worst_performer['pnl_percent'] if summary.worst_performer else 0:+.1f}%) |
📋 **체크리스트 이행**
- [ ] 가치 > 가격 확인
- [ ] 10% 손절 규칙 적용
- [ ] 핵심 2~5종목 집중 확인
"""
return report
# ============== CLI Interface ==============
def main():
import argparse
parser = argparse.ArgumentParser(description='Stock & Crypto Portfolio Tracker')
subparsers = parser.add_subparsers(dest='command', help='Available commands')
# Add position
add_parser = subparsers.add_parser('add', help='Add a position')
add_parser.add_argument('--symbol', required=True)
add_parser.add_argument('--type', required=True, choices=['stock', 'crypto', 'etf'])
add_parser.add_argument('--quantity', type=float, required=True)
add_parser.add_argument('--cost', type=float, required=True)
# Show portfolio
subparsers.add_parser('show', help='Show portfolio summary')
# Update prices
subparsers.add_parser('update', help='Update prices from market')
# Daily report
subparsers.add_parser('daily', help='Generate daily report')
# Weekly report
subparsers.add_parser('weekly', help='Generate weekly report')
args = parser.parse_args()
tracker = StockTracker()
if args.command == 'add':
tracker.add_position(args.symbol, args.type, args.quantity, args.cost)
print(f"✅ Added {args.quantity} {args.symbol} @ ₩{args.cost}")
elif args.command == 'show':
summary = tracker.calculate_portfolio_summary()
print(f"\n📊 Portfolio Summary")
print(f"Total Value: ₩{summary.total_value:,.0f}")
print(f"Total Cost: ₩{summary.total_cost:,.0f}")
print(f"P&L: ₩{summary.total_pnl:,.0f} ({summary.total_pnl_percent:+.1f}%)")
print(f"\nPositions ({len(summary.positions)}):")
for pos in summary.positions:
print(f" {pos['symbol']}: {pos['quantity']} @ ₩{pos['avg_cost']:,.0f} → ₩{pos['current_price']:,.0f} ({pos['pnl_percent']:+.1f}%)")
elif args.command == 'update':
prices = tracker.update_prices()
print(f"✅ Updated {len(prices)} prices")
elif args.command == 'daily':
print(tracker.generate_daily_report())
elif args.command == 'weekly':
print(tracker.generate_weekly_report())
else:
parser.print_help()
if __name__ == '__main__':
main()